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ABSTRACT. A comprehensive environmental monitoring program based on a sound statistical design is
necessary to provide estimates of the status of, and changes or trends in, the condition of ecological resources.
A sampling design based upon a systematic grid can adequately assess the condition of many types of resources
and retain flexibility for addressing new issues as they arise. The randomization of this grid requires that it be .
regular and retain equal-area cells when projected on the surface of the earth. After review of existing approaches
to constructing regular subdivisions of the earth’s surface, we propose the development of the sampling grid on
the Lambert azimuthal equal-area map projection of the earth’s surface to the face of a truncated icosahedron fit
to the globe. This geometric model has less deviation in area when subdivided as a spherical tessellation than
any of the spherical Platonic solids, and less distortion in shape over the extent of a face when used for a
projection surface by the Lambert azimuthal projection. A hexagon face of the truncated icosahedron covers the
entire conterminous United States, and can be decomposed into a triangular grid at an appropriate density for
sampling. The geometry of the triangular grid provides for varying the density, and points on the grid can be
addressed in several ways.
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Introduction

The health of the environment is an issue of global,
national, regional, and local concern. Recent trends
in energy production and climate change, for exam-
ple, reemphasize the need for a wide-area focus in assess-
ing the quality of the environment. In this paper we first
discuss the salient aspects of a statistically designed envi-
ronmental monitoring program that is responsive to these
concerns. Then we review and analyze several approaches
to a global geometry that could be used to implement the
statistical design. Finally we describe the properties of a
regular sampling grid placed on the surface of an appro-
priate global model.

Environmental Monitoring to Meet
Many Needs

The U.S. Environmental Protection Agency (EPA) is re-
sponding to a widely shared view that the United States
needs more comprehensive and sound knowledge of the
state of the environment by planning a long-term ecological
monitoring program (Messer, Linthurst, and Overton 1991).
The goal of such a monitoring program is to assess gen-
erally the health of the environment across the United States
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and other parts of North America, and possibly the entire
globe. The program will be based upon a comprehensive
statistical design in order to obtain sound estimates of the
status of, and trends in, the condition of the environment
with known degrees of confidence.

Developing the monitoring program requires a design
that can sample any spatially distributed and identifiable
ecological resource (such as types of forests, lakes and
streams, wetlands, estuaries, deserts and grasslands, and
agricultural ecosystems) without having an explicit sam-
pling frame available, as there would be in a conventional
sampling design for a single resource. The design should
lead to explicit probability samples for well-defined popu-
lations of resources, but also be flexible, to accommodate
the sampling of many different kinds of ecological re-
sources and emerging kinds of environmental stresses.

Specific objectives of the monitoring program for indi-
vidual ecological resource types are the description of the
status, and changes or trends in status, of various biolog-
ical, chemical, and physical indicators of its health for broad
regions of the United States. An important additional ob-
jective is determining the association among indicators of
sources of environmental stress, exposure to stress, and
biological response to stress. This objective prescribes some
degree of coincidence in sampling in space and time.

Statistical Design Strategy

The design strategy chosen to meet these objectives is based
upon a grid of points at which each ecological resource type
will be sampled. The neighborhood of each point will be
characterized by ecological and land-use criteria. A collec-
tion of sampling units of each resource type in the neigh-
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borhood of each point will constitute a Tier 1 sample, to be
used to estimate the structural properties of the regional
and national populations of these types. The structural
properties include the numbers of resource units, their sur-
face area, linear dimension, shape, landscape pattern, and
other geometric or geophysical measures obtainable from
remotely sensed imagery. A subsample of this Tier 1 sam-
ple will be used for field sampling of other attributes of the
resources. This double sample (Cochran 1977) will consti-
tute Tier 2 of the design. Field measurements will include,
for example, chemical analyses of water samples, visual
symptoms of foliage damage to forests, species composi-
tion of wetlands, and other indicators of environmental
well-being.

The efficient statistical properties of estimates made from
the double sample derive in large part from the extensive-
ness of the Tier 1 sample and the relevance of the infor-
mation in the data on that sample to the data in the double
sample. But a major advantage of this design strategy is
that the Tier 1 characterization of areas around the grid
points is not restricted to the resources identified a priori.
Other resources may be sampled at a later time in response
to a new issue regarding their health. The primary design
device to implement this adaptive capability is the sampling
grid.

Rationale for Cartographic and Geometric
Properties of Design

The program objectives and design strategy lead to a set of
criteria for the cartographic and geometric properties of the
design. The specification of a probability sample requires
that the sampling grid be positioned randomly. The most
straightforward randomization is by a single random trans-
lation of the grid in a plane, followed by the projection of
the randomized grid onto the earth’s surface. An equal-
area map projection is required to preserve the sampling
probabilities. The equal-area property also assures that any
fixed-size area has the same probability of being sampled,
regardless of its location.

Thus, a regular systematic grid of sampling points in the
plane of an equal-area map projection best achieves the
randomization and equal-area criteria. Additional criteria
are that the grid provide compact areas within which to
select sampling units, and that it not be aligned with any
regularly spaced cultural or physical landscape features.
Also, methods for enhancing the density of the grid in a
regular hierarchical pattern are useful for increased sam-
pling of rare ecological resources, and methods for reduc-
ing the density are useful for implementing regular cyclical
sampling in time. Finally, we want a grid system that can
conveniently cover the conterminous United States, and be
extended to other parts of the country and, potentially, to
other parts of the world.

Projecting from the earth’s surface to a plane results in
area or shape distortion or both. Over large areas of the
earth, the magnitudes of these distortions can become quite
large. Therefore, it is important to select an. appropriately
sized and shaped piece of the earth on which to implement
the sampling grid. We review below a number of ap-
proaches to this problem. Since we have specified an equal-

area map projection, the primary concern is with shape (or
scale) distortion across the projection surface. However, it
is also useful to review and analyze area distortions in oth-
erwise attractive approaches.

Global Framework

Review of Alternative Geometries

A number of approaches to subdividing the surface of the
earth in a regular way for large area or global data analysis
have been suggested. The approaches can be classified as
map-projection approaches, polyhedral tessellations, and
adaptive subdivision systems.

Map-Projection Approaches. Existing map-projection co-
ordinate systems provide potential frameworks for subdi-
vision. Tobler and Chen (1986) proposed the Lambert
cylindrical equal-area projection as the basis for a quadtree
(Samet 1984) referencing and storage system. Their solution
attempts to satisfy several principles: regular hierarchical
data structuring, easy conversion to other systems, direct
relation to latitude and longitude, and equal-area subdivi-
sions. This is achieved by first representing the earth in
Lambert’s cylindrical projection, then transforming the rec-
tangular representation derived from the cylindrical pro-
jection into a square by an area preserving quadrature, and,
finally, placing a square grid upon the result. The “vertical”
grid lines of this system are meridians spaced at regular
intervals and the “horizontal” grid lines are parallels spaced
proportional to the sine function. While meeting the au-
thors’ requirements, this system has one major disadvan-
tage for our application: the variation in shape of the
subdivision cells on the earth, from nearly square at the
equator to acute isosceles triangles at the poles.

Mark and Lauzon (1985) proposed an addressing and
storage system based upon the Universal Transverse Mer-
cator (UTM) coordinate system. They propose to divide the
60 UTM zones into north to south subzones that are square
in the projection plane. (Depending upon the ultimate cell
size of the data base, division into east-west subzones might
also be necessary.) Each subzone is then further subdivided
into a regular square grid of patches, and each patch into
a square grid of cells for data storage. Patch and cell ad-
dresses can then be implemented as linear quadtree ad-
dresses convenient for computer representation. For our
use, the UTM-based system has the major disadvantage of
not representing the earth’s surface in equal-area pieces. It
also has major discontinuities in the polar regions, and lesser
discontinuities at the edges of the zones.

Polyhedral Tessellations. Another set of approaches to
subdividing the world uses knowledge of three-dimen-
sional geometry, first developed in ancient Greece. The Pla-
tonic solids are the five regular polyhedra, the tetrahedron,
hexahedron (cube), octahedron, dodecahedron, and ico-
sahedron (Coxeter 1948; Pearce and Pearce 1978). These
solids can be inscribed in a sphere as the basis of a world
subdivision system. Dutton (1989), for example, has pro-
posed using an octahedron as the basis for a system called
a quaternary triangular mesh (QTM). The octahedron is
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initially aligned with the cardinal points of the latitude and
longitude coordinate system; that is, the six vertices are
placed at the poles and along the equator at 0, 90, —90,
and 180 degrees of longitude. Each triangular face of the
octahedron is then recursively subdivided into four subtri-
angles by placing vertices at the midpoints of the edges,
until the size of the faces, or the distance between vertices,
is small enough to resolve the features of interest. Dutton
calculates that 1-meter resolution is obtained after 21 levels
of decomposition. A variation on QTM, proposed by Good-
child and Shiren (1989), uses a different numbering system
for the four subtriangles at any level, and provides a
straightforward conversion between latitude and longitude
and the QTM coordinate system. The QTM systems, like
UTM, do not subdivide into equal-area cells, and thus are
not suitable for a sampling design specifying the equal-area
property.

The dodecahedron has been used by Wickman, Elvers,
and Edvarson (1974) for creating a global sampling net-
work. They initially subdivide each pentagon of the do-
decahedron into five isosceles spherical triangles, and then
recursively subdivide these triangles into four pseudo-tri-
angles. An equal-area subdivision is obtained by connect-
ing edge midpoints with two equal-length great circle arcs
joined at a vertex slightly displaced from the single great
circle arc connecting the midpoints, so as to create equal
areas. The polygons created are four- and six-sided figures,
close to triangular in shape. Thus, this system maintains
the equal-area property on the sphere. The primary dis-
advantage for our application is the small irregularities in
shape, which prevent the use of a simple randomization
scheme.

Fekete (1990) has used the icosahedron as a model for
representing data distributions on the sphere. Single-val-
ued spherical surfaces are modeled as triangles whose ver-
tices are projected onto the sphere. The model is initiated
with the vertices of the icosahedron, and recursively sub-
divided as in the QTM models until the error in represent-
ing the surface values (not necessarily in resolving location)
is below a prescribed minimum. The fourfold recursive
subdivision allows an adaptation of the planar quadtree,
called the sphere quadtree, for data storage and address-
ing. As with QTM, the icosahedral tessellation with recur-
sive triangular subdivision does not produce equal-area cells,
though the area and shape variation is less than that pro-
duced by the octahedral tessellation (see the following
analysis).

Adaptive Subdivision Systems. The two preceding ap-
proaches are based upon regular decompositions of map
projections of the earth to a plane, or upon decompositions
of regular polyhedra fit to the earth, or upon a hybrid of
these. An alternative approach starts with a given pattern
of objects on the earth and tessellates a surface of areal
units based upon some property. Lukatela (1987) describes
a system for creating the Dirichlet network on a spheroid.
The Dirichlet network is also known as the Voronoi or
Thiessen network (Upton and Fingleton 1985). This net-
work separates the spheroid into polygons whose loci are
all points closest to the set of original points that defined
the network. The only sets of points known to result in
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perfect equal-area Dirichlet tessellations are the centers of
the faces of the respective Platonic solids fit to the sphere
(Coxeter 1969). Lukatela has described (personal commu-
nication), for example, a decomposition starting with the
vertices of -a dodecahedron and creating the next level of
Dirichlet tessellation from the vertices of the preceding level.
Only at the level of the original dodecahedron does this
approach have regular size and shape cells.

Two previous studies have considered respacing paral-
lels and meridians to obtain equal-area cells on the sphere
(or spheroid). Bailey (1956) contrasted the two cases of res-
pacing only the parallels or only the meridians. Paul (1973)
investigated several cases of combining both. While obtain-
ing an equal-area subdivision on the sphere, these grid
systems do not provide for an equal-area regular grid in
the plane, except within a cell. Furthermore, the cells-are
quadrilateral, and therefore less compact than some other
shapes. Another possible adaptive approach not explored
in the literature, to our knowledge, is (quadratic) optimi-
zation applied to a sphere. Our problem, stated in the lan-
guage of optimization, is the placement of an arbitrary
number of cells on the sphere with an objective function
specifying equality of area and compactness of shape.
Equality of area could alternatively be specified as a
constraint.

A New Approach and Rationale

Based upon our survey of existing proposals for global sub-
division systems, we conclude that none meet all of the
objectives of equal area, equal and compactly shaped sub-
divisions with minimal scale distortion, and a hierarchical
structure for enhancement and reduction. We also regard
existing map projections optimized for coverage of specific
areas, such as the standard Albers equal-area conic projec-
tion configured for the United States, to be appropriate for
those specific areas, but difficult to extend elsewhere.
Therefore, we propose a new system based upon an equal-
area map projection onto plates of a semiregular (or Ar-
chimedean) polyhedron, but with possible adaptations for
repositioning the polyhedron to best fit different parts of
the earth or for covering large or noncompactly shaped
areas of interest. This system uses the truncated icosahed-

ron, a 32-face polyhedron with 20 hexagons and 12 pen-

tagons arranged in a five-way symmetry about a central
axis connecting two pentagons. This solid achieves the best
compromise among the regular and semiregular polyhedra
in meeting the following objectives: faces large enough to
cover significant subcontinents (such as central North
America, including the conterminous United States); faces
small enough to keep scale distortions in map projections
to about 2 percent; compact and similar face shapes (hex-
agon and pentagon); and.some degree of familiarity (the
pattern often used to construct soccer balls). The systematic
sampling grid can then be defined as a regular decompo-
sition of the grid formed by the vertices and center of a
hexagon of this model. The map projection we propose is
the Lambert azimuthal equal-area projection with a tangent
plane. We support our proposal with an analysis of the
spherical tessellations of regular polyhedra and, alterna-
tively, map projections upon the faces of these polyhedra.
We similarly analyze the truncated icosahedron.
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tetrahedron hexahedron (cube)
Figure 1. The five regular polyhedra, or Platonic sohds.

Table 1. Geometric characteristics of the Platonic solids.

tetrahedron  hexahedron  octahedron dodecahedron icosahedron
face polygon triangle square triangle pentagon triangle
number of faces 4 6 8 12 20
number of edges 6 12 12 30 30
number of vertices 4 8 6 20 12
proportion of total 1/4 1/6 18 V12 1720

area in each face

Analysis of Spherical Tessellations of Regular Polyhedra.

The five regular, or Platonic, polyhedra are shown in Figure
1 and listed with their properties in Table 1. A circumscrib-
ing sphere can be made to touch all vertices of each poly-
hedron, and polyhedron edges can be thought of as chords
of circles that can be projected onto the sphere as great-
circle segments, called geodesic lines. These geodesic lines
form the edges of spherical triangles, squares, or pentagons
that completely cover the sphere and are regular in the
sense that all sides and interior angles are equal (Figure 2).
The area of each spherical polygon relative to the entire
sphere will be the same as in the Platonic solid; for exam-
ple, each spherical triangle projected from an icosahedron
will cover 1/20 of the sphere’s surface area. Vertices of
spherical polygons with these characteristics are equally
spaced, and, hence, provide an ideal set of starting points

hexahedron (cube)

for subdividing the globe further. Figure 3 portrays one face
of each spherical tessellation, using the Lambert azimuthal
projection.

Since further subdivision of any of these five spherical
polyhedra will produce spherical polygons unequal in size
or shape or both, the question of which polyhedron pro-
duces the least overall size and shape distortion is of con-
siderable interest. Distortions in size and shape can be
studied by subdividing a spherical face of each polyhedron
in the same manner, and comparing the areas and interior
angles of the smaller polygons formed. It helps if all pol-
ygons are of the same degree, which suggests triangulating
the faces into a network similar to the triangular networks
that comprise geodesic domes (Popko 1968).

The most popular method of triangle subdivision in geo-
desic construction is called the alternate method (Gasson

Figure 2. The spherical tessellations of the five regular polyhedra.

Cartography and Geographic Information Systems




Figure 3. One face of each spherical tessellation with a 15°
latitude, 30° longitude, geodetic grid.

1983), and can be applied directly to the geodesic edge lines
for each different spherical triangle. In the alternate method,
four new triangles are constructed by creating vertices at
the midpoint of each edge of the parent triangle. In the
geodesic field, this is called a “two-frequency” subdivision
of a triangle. Performing this quartering procedure again
produces a “four-frequency” subdivision.

The two- and four-frequency subdivisions of the spher-
ical polyhedra are shown in Figure 4. Cube and dodeca-
hedron faces must be first subdivided into four and five
triangles, respectively, that are identical in size and shape,
but have only two equal interior angles. Tetrahedron, oc-
tahedron, and icosahedron faces are triangular, and the
faces for each are identical in size and shape, and have
three identical interior angles. The areas and interior angles
of these two- and four-frequency triangles on’the sphere
cannot all be equal, and the deviation in area and interior
angles can be determined through spherical trigonometry.

The deviations in spherical triangle areas are given in
Table 2 as percentages of the average area for two- and
four-frequency subdivisions of each polyhedron. Remem-
bering that the spherical cube and dodecahedron faces have
been initially divided into four and five triangles of equal
size and shape, respectively, the numbers demonstrate that
area differences among triangles generally decrease in pro-
portion to the area of the starting triangle, reaching a dif-
ference of zero for infinitely small initial triangles. Average
deviations in area also appear to be the same for the two-
and four-frequency data, prompting a conjecture that the
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icosahedron

pentagon

truncated

icosahedron

hexagon
Figure 4. The two- and four-frequency subdivision of one
face of each spherical tessellation.

amount of deviation is independent of subdivision fre-
quency. The range of area deviation is approximately three
times the average deviation for all two-frequency subdivi-
sions, and four-frequency subdivisions have a wider de-
viation range than the two-frequency. Further investigation
is needed to determine if the deviation range approaches
a maximum limit with increasing subdivision.

The area deviation data point out the benefits of using
small initial triangles as the starting point for defining sam-
ple points as the vertices of triangles formed by successive
quartering. It is also desirable to have sample points from
a network of similarly shaped spherical triangles, consid-
ering that an initial equilateral triangle network cannot be
obtained except from the spherical tessellations of the tet-
rahedron, octahedron, and icosahedron.

One measure of similarity is the deviation of triangle in-
terior angles from those of an equilateral triangle of the
same surface area. This measure can be extended to all
triangles in a two- or four-frequency subdivision, giving the
average interior angle deviations and deviation ranges listed
in Table 2. The icosahedron and dodecahedron subdivi-
sions clearly deviate the least from the equilateral ideal. The
average deviation appears to be stable with increasing sub-
division frequencies, and the deviation range should slowly
increase to a maximum of 30 percent for both. This is pri-
marily due to the starting triangles being small in area and
close to equilateral in both cases.

Truncated Icosahedron Tessellation. Subdividing the ico-




Table 2. Deviation in area and interior angles for two- and four-frequency subdivisions of the initial spherical triangles

from the Platonic solids.

tetrahedron ~ hexahedron

2freq 4freq  2freq 4freq
avg. triangle area 6.25 1.56 1.04  0.26
(% of sphere)
avg. deviation 50.0 50.0 6.32  6.65
(% of avg. A area)
deviation range 133.0 226.93 22,17 28.46
(% of avg. A area)
avg. interior angle 75.0 63.75 62.5 60.625
(degrees)
avg. deviation 40.0 40.46 19.12 19.14
(% of avg. int. angle)
deviation range 100.0 136.43  66.57 72.86

(% of avg. int. angle)

sahedron and dodecahedron using the alternate method
will produce sample points at vertices of spherical triangles
that are approximately equal in size and shape, but the
maximum deviations are unacceptably large for many sam-
pling systems. Minimizing these deviations requires smaller,
hexagonally shaped faces, so that nearly equilateral trian-
gles are formed when the hexagon is triangulated. Such
hexagons are a characteristic of the semiregular polyhedron
called the truncated icosahedron, one of the 14 Archime-
dean solids (13 discovered in ancient Greece, the 14th in
the 20th century [Lyusternik 1963]). These solids have con-
gruent vertices and regular polygons as faces, but may have
more than one kind of regular polygon. The truncated ico-
sahedron (Figure 5) can be conceptualized as an icosahed-
ron, with each of the 12 vertices truncated to form a
pentagon, leaving 20 hexagons in the remainder of the 20
original triangular faces. There is only one size of trunca-
tion that creates precisely regular pentagons and hexagons
from the icosahedron. As with the Platonic polyhedra, a
circumscribing sphere can be fit to the 60 truncated icosa-
hedron vertices, and the 90 edges can be projected onto

Figure 5. The truncated icosahedron, as polyhedron and as
spherical tessellation.

10

octahedron dodecahedron  icosahedron
2freq  4freq 2freq 4dfreg 2freq 4freq
3.125 0.78 0.417 0.104 1.25 0.312
20.19 20.19 2.34 2.34 7.25 7.25
53.84 77.54 7.15 9.1 19.33 25.64

67.5 61.875 61.0 60.25 63.0 60.75
18.91 19.4 8.36 8.37 7.34 7.84
52.24 69.06 27.11 29.06 21.78 27.9

the sphere to form the “soccer ball” pattern, as seen in
Figure 5, for the globe.

The hexagon of this model is 66.7 percent of the area of
an icosahedron triangle, but 71.8 percent of a spherical ico-
sahedral triangle. The total area of the pieces of the three
pentagons in one triangle is correspondingly reduced from
33.3 percent to 28.2 percent of the icosahedral triangle. On
the globe, the hexagon is large enough to cover the con-
terminous 48 states of the United States, plus southern
Canada and northern Mexico. The truncated icosahedron
hexagon is, therefore, an excellent starting point for a large-
area triangular sampling grid.

The favorable geometric properties of the hexagonal faces
can be seen in Figure 4, which shows a two- and four-
frequency subdivision into what appear to be equilateral
spherical triangles. This is a slight misperception, since these
triangles do deviate slightly in area and shape, as sum-
marized in Table 3. The average deviation of less than 1
percent is a threefold improvement over the dodecahedron
subdivision, and the improvement in the deviation range
is even better. As with the spherical Platonic solids, the
average deviation appears constant with increased subdi-
vision frequencies, and the deviation range increases
gradually.

Even more striking is the nearly fivefold decrease in the
average deviation in interior angles relative to the icosa-
hedron, coupled with a threefold to fourfold decrease in
the deviation range. This translates to angles ranging from
approximately 58 to 62 degrees for the four-frequency sub-
division. The deviation range increases little with further
subdivision, and reaches a maximum of 7.13 percent as the
spherical triangles become geometrically indistinguishable
from plane triangles. The vertices of these triangles are likely
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Table 3. Deviation in area and interior angles for two- and four-frequency subdivisions of the initial spherical triangles
from the hexagons and pentagons of the truncated icosahedron.

" hexagon triangles

pentagon triangles

2 freq 4 freq 2 freq 4 freq
average triangle area 0.1496  0.0374 0.1174 0.02935
(% of sphere)
average deviation 0.82 0.82 0.66 0.67
(% of avg. A area)
deviation range 2.22 2.79 2.20 2.50
(% of avg. A area)
average interior angle 60.359 60.0898 60.2818 60.07045
(degrees)
average deviation 1.56 1.56 11.87 11.87
(% of avg. int. angle)
deviation range 6.21 6.91 29.17 29.79

(% of avg. int. angle)

to be the closest to an equal area, equal-shape sampling
grid, based on recursively subdividing the sphere across
areas the size of the conterminous United States.

A global sampling system based on the truncated icosa-
hedron will have 28.2 percent of the earth’s surface falling
within the 12 pentagons. Each pentagon can be divided
into five identical spherical isosceles triangles (Figure 4),
each of which can be further partitioned into two-, four-,
and higher-frequency subdivisions, using the alternate
method. As seen in Table 3, both the average deviation and
the deviation range in the areas of the two- and four-fre-
quency triangles are slightly less than the corresponding
triangles from the subdivision of the spherical hexagon.
Since each of these five triangles is 78.5 percent of the area
of a triangle in the initial division of the spherical hexagon,
subdividing in this manner gives triangles 21.5 percent
smaller on average than those in the same frequency sub-
division of the hexagon triangles.

The average interior angle is also closer to 60 degrees for
the pentagon subdivision, but the angular deviation and
deviation range is far greater than for the hexagon. This is
due to the pentagon triangles not being equilateral, but
rather nearly the shape of a 72-54-54 degree plane isosceles
triangle. Deviation within the individual angles is small,
however, since the maximum range for the larger angle will
be from 70.1 to 72.0 degrees, and for the two smaller angles
from 54.0 to 55.69 degrees. These values represent the limit
of these angles with increasing subdivision.

Map-Projection Surface Tessellation of Polyhedral Faces. A

high-frequency subdivision of a truncated icosahedron face
produces a triangular sampling grid defined by spherical
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triangles nearly equal in area and shape. However, this
approach suffers in that all triangles differ slightly, and
their vertices and distortion characteristics become tedious
to compute as the triangular network density is increased
to thousands of faces.

A map-projection surface tessellation is another possi-
bility. Here, the polyhedron faces on the sphere are trans-
formed into a planar map-projection surface, upon which
a grid of equilateral triangle vertices can be plotted and
retransformed into latitude and longitude positions on the
sphere or spheroid. The advantages to this approach are
several, including the ability to project onto an equal-area
map-projection surface so that equilateral triangles on the
projection surface define equal-area triangles on the sphere
or spheroid. This is accomplished in the map-projection
equations, by differentially distorting the map scale along
the parallels and meridians so that identical equilateral tri-
angles on the projection surface define triangles of equal
area, but continuously varying shape, on the globe. The
advantage over directly subdividing the sphere is that the
shape distortion is gradual, and can be computed easily for
every sample point, as can the geographic coordinates.

Equal-area map projections of Platonic solids and trun-
cated icosahedron faces are illustrated in Figure 6. The
Lambert "azimuthal equal-area map projection was used
throughout because shape distortion is the same along any
circle of a given radius from the projection center. If the
polyhedral face center is made the projection center, shape
distortion will vary in a circular pattern away from the cen-
ter, and a projection surface with a minimal range in shape
distortion will result, due to the symmetry in each poly-
hedron face. This projection produces the shape distortion
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k = 225%

K o= 12.6%

tetrahedron

K o= 126%

hexahedron (cube)

octahedron dodecahedron
K= 22%
truncated
truncated _
icosahedron 'Oofnaéhedron
hexagon pentagon

Figure 6. The 1-percent scale distortion contours from the Lambert azimuthal equal-area projection of one face of each
spherical tessellation.
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indicated by the concentric circles in Figure 6. These circles
are the contours of distortion along the parallel (k distor-
tion) in 1 percent increments.

These distortion maps show the expected decreases in
shape distortion with decreasing face sizes. The map-pro-
jection surface for the tetrahedron spherical face has the
greatest distortion, with the map scale along the parallel at
the farthest face edge being more than 22 percent larger
than the scale at the face center. In an equal-area projection,
the map scale along a meridian (h distortion) at a face edge
must then be 18-plus percent smaller (h = 1/k = 1/1.225)
than at the zero-distortion face center. The maximum shape
distortion is less on the projected faces of the cube and
octahedron, and still less on the projections of the dode-
cahedron and icosahedron faces. Because of its small size
and roughly circular shape, the truncated icosahedron hex-
agon face has the lowest maximum distortion of all these
figures. Here, the map scale at the farthest face edge is a
maximum of 2.2 percent larger along the parallel, and 2.2
percent smaller along the meridian. The conterminous United
States easily falls within the 2 percent scale distortion circle.

The -difference between determining sample points by
recursive subdivision of spherical polyhedra faces, and by
subdivision of equilateral triangles on an equal-area map
projection of the spherical faces can now be stated more
clearly. Direct subdivision of the spherical face produces a
network of sample points that is nearly regular in the area
and shape of the triangles that define the point locations.
The triangles are, however, slightly different in area and
shape, with some being close to the equilateral ideal, and
others deviating significantly. The triangles defined on the
Lambert projection, on the other hand, are equal in area
and represent equal-area spherical triangles on the globe.
The shape distortion introduced by the Lambert equal-area
map projection is systematic, easy to compute, and smaller
in range than the distortion introduced by recursive sub-
division directly on the sphere.

A similar subdivision procedure will create a grid of ever
smaller 72-54-54 degree isosceles triangles on each penta-
gon face. These will be 20.5 percent smaller in area than
hexagon triangles for the same subdivision frequency. Fig-
ure 6 shows a maximum scale distortion at each edge vertex
of 1.6 percent along the parallel. The 0.6 percent difference
in maximum scale distortion on the pentagon and hexagon
faces is due to the polyhedron being slightly modified to
circumscribe the globe. This means that the center of each
hexagon and pentagon touches the globe, but the distance
between the globe center and hexagon edge vertex on the
projection surface is 2.65 percent longer than for the same
vertex on the adjacent pentagon projection surface. The
formulas for the Lambert projection transform this differ-
ence in distance to 0.6 percent, meaning that the (x, y)
projection ¢oordinates for each pentagon must be multi-
plied by a 1.006 scaling constant if the distance between
two edge vertices on the projection is to match the distance
between the same two vertices on the hexagon projection.
‘This small-scale enlargement required for creation of per-
fectly matching polyhedron vertices must be taken into ac-
count when computing the areas of triangles on the pentagon
face.
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Interfaces Between Adjacent Faces,
and Pentagon Grids

The Lambert azimuthal map projection transforms vertices
of a spherical hexagon and pentagon into vertices of regular
hexagons and pentagons on the projection plane. The geo-
desic lines between vertices that bound each spherical poly-
gon are not projected as straight lines, but rather as slight
curves bowing outward from the projection center. This
complicates the generation of sample points on the projec-
tion surface, since regular hexagons and pentagons on the
plane are required for points to be vertices of triangles of
equal area and shape. These can be created only by equally
spacing a row of sample points along each edge of a planar
regular hexagon or pentagon, according to the desired sam-
pling density.

This procedure introduces the problem of how to set
sample points within the “slivers” created between the planar
polygon edges and the slightly bowed spherical polygon
edges. These slivers are narrow (36.2 km and 28.5 km max-
imum widths for the hexagon and pentagon edges, re-
spectively), meaning that “lune-like” slivers with maximum
widths of 72.4 and 64.7 km, respectively, are formed be-
tween hexagon-hexagon and hexagon-pentagon edges.

One solution is to place additional points in the sliver
between two adjacent sampling grids. One method for this
is to extend the triangular grid from one of the two adjacent
hexagons into the sliver, clipping to the sliver boundary.
Figure 7a is a schematic illustration of how the sliver (greatly
exaggerated in width) appears in the Lambert projection
with two hexagons meeting in a straight line, and the great
circle dividing the sliver projected as an arc into the op-

Figure 7. Spherical slivers between plane hexagons in the
Lambert azimuthal and gnomonic projections (exaggerated
in width for illustration purposes). (a) Top: A randomized
grid across two adjacent hexagons, each shown in the Lam-
bert azimuthal projection. Each hexagon’s portion of the
sliver is shown as a half-lune from the straight hex edge to
the great circle arc separating the hexagons. The great-circle
arc between the hexagons thus appears twice. (b) Bottom:
A randomized grid across two adjacent hexagons in the
gnomonic projection. The great-circle arc between the hex-
agons is shown in a thin line. Sample points from each
hexagon are extended by one row into the sliver.
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posite hexagon. Figure 7b illustrates the situation in a gno-
monic projection, which represents the great circle between
two hexagon vertices as a straight line and the hexagon
edges as arcs. The interface between a hexagon and a pen-
tagon can be handled in a similar way.

A more elegant solution is to “unbow” each edge of the
projected spherical polygon by modifying the map-projec-
tion equations to produce regular hexagons and pentagons.
John Snyder (1991) has very recently devised such a pro-
jection, to be called the Equal-Area Polyhedral Projection.
After deriving this projection, he found that Irving Fisher
had used the same concept in a design for the icosahedron,
reported as a footnote in Bradley (1946), but Snyder has
carried the derivation further, to include other polyhedra,
inverse formulas, and distortion analysis. Snyder’s idea is
best understood by examining one of the six equilateral
triangles forming a pole-centered hexagon (Figure 8). The
scale in the meridional direction has been progressively
reduced from the edge to the center of the triangle base.
This reduction allows the geographic coordinates of posi-
tions along the great-circle triangle base to be projected to
a straight line, eliminating the slivers between adjacent faces.
The projection is made equal area by adjusting the spacing
of meridians from the edge to center of the triangle, re-
sulting in a maximum angular deformation of 3.75 degrees
and a maximum scale distortion of 3.3 percent. Since this
is done for the six hexagon edges, all hexagon-to-hexagon
edges will match exactly. The Equal-Area Polyhedral Pro-
jection can also be applied to the five isosceles triangles

Lambert Azimuthal

Equal Area Projection

composing each pentagon. Pentagon-hexagon edges match
to within 1 part in 10° of the length of a side.

The placement of a grid on a pentagon of a truncated
icosahedron introduces additional issues. An equilateral
triangular grid cannot include the vertices of a pentagon.
One solution is to divide the equal-area projected surface
of the pentagon into five isosceles triangles, and subdivide
these into congruent triangles such that the spacing be-
tween points and areas of the triangles are close to those
of the equilateral triangles of the hexagon grid (Figure 9a).
A second possibility is to extend the five adjacent hexagon
grids into the adjoining triangle of the pentagon, or, in
effect, to use the icosahedron as the model solid (Figures
9b and 9c¢). As shown above, this sacrifices the low distor-
tion characteristics that can be achieved on the projected
hexagons and pentagons of the truncated icosahedron.

Advantages and Disadvantages of Different
Global Configurations
For the application of this global tessellation to a sampling
network for the conterminous United States, we have po-
sitioned the solid such that one hexagon covers all of the
land area in the conterminous states and nearby coastal
waters, and such that a neighboring hexagon covers all of
Alaska, except the end of the Aleutian chain of islands
(Figure 10). Also note that the Hawaiian Islands fall within
a third hexagon. In placing the truncated icosahedron to
optimize the coverage of central North America with a sin-
gle hexagon, other parts of the world may naturally be less

Equal Area

Polyhedral Projection

Straight Line Drawn Between
Hexagon Vertices as Starting
Line for Triangular Sampling

Curved Great Circle
at Hexagon Edge

Straight Great Circle Line
at Hexagon Edge

Figure 8. The Lambert Azimuthal Equal-Area and the Equal-Area Polyhedral (designed by John Snyder) map projections
of one-sixth of a truncated icosahedron hexagon, centered on the North Pole.
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Figure 9. Placement of regular grids on the pentagon of the
truncated icosahedron. (a) Top: Sample grid placed on one
of the isosceles triangles. (b) Middle: The hexagon grid (larger
triangle) clipped to the pentagon triangle. (c) Bottom: How
the hexagon grid meets on two adjacent pentagon triangles.

well covered. Several alternatives are possible for address-
ing the placement of sampling grids in different parts of
the world. One, of course, is to use this particular config-
uration as it extends across the globe. Second, a less-spe-
cific configuration could be used. Third, no single
configuration need be specified; rather, an adaptive solu-
tion suited to any area of interest could be used.

Several criteria are not important in choosing one of these
alternatives. For making global or continental scale esti-
mates of population attributes, the lack of coherence among
different geometries from different sampling designs is not
a problem, as long as the probability structures of the var-
ious designs are known. Mapping discrete or continuous
population distributions for the globe, or for large areas of
the globe, also is not affected by different sampling geo-
metries, as long as the conversion to some standard coor-
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dinate system is known. And the incorporation of data from
different sampling designs into global or continental scale
ecological or geophysical models is likewise not limited by
different sampling geometries, since data can be placed into
a common georeferencing system, either as aggregate pop-
ulation estimates or as individual sampling observations
whose location coordinates are converted to a common
system.

Extending the configuration for good coverage of central
North America, Alaska, and Hawaii takes advantage of the
existing cartographic development and provides good cov-
erage for several other parts of the world, most notably the
Indian subcontinent and central South America. Unfortu-
nately it splits Europe into east and west, and divides Japan
into two hexagons. This configuration is shown in three
orthographic views in Figure 11.

An alternative fixed configuration of the truncated ico-
sahedron can be labeled the polar configuration, as it is the
natural orientation for a rotational sphere. In this case, the
centers of two pentagons are placed at the poles, and the
pattern is fixed about the rotational axis of the earth by
arbitrarily locating one of the meridional edges between
two hexagons along the Greenwich meridian. This config-
uration avoids any element of chauvinism, and perhaps
best relates to other standard reference systems such as
latitude-longitude. Study areas such as the north polar re-
gion are covered symmetrically with this placement; how-
ever, many other areas require several faces, including many
that could be covered well by a single hexagon, such as
Australia and Europe. This configuration is shown in the
Hammer-Aitoff projection in Figure 12.

The final alternative is to recognize again that there is no
known optimal tessellation figure, and no optimal config-
uration pattern for the truncated icosahedron as a compro-
mise model. Since the primary objective of this geometric
model of the earth is for probability sampling, and since
we specify an equal-area map-projection approach as best
suited for this objective, an adaptive policy toward global
configurations has certain advantages. In this view, each
area of interest on the earth is covered by the best config-
uration of truncated icosahedron faces, or possibly by other
models and associated projections. In many, if not most,
cases, the truncated icosahedron faces with the Lambert
azimuthal projection provide a good compromise between
area of coverage and map-projection distortion. Such an
adaptive approach requires mechanisms for reconciling
overlapping grids from designs developed on different cen-
ters, or for creating seams between such designs. This
problem is similar to the seam problem between adjacent
hexagons, and between hexagons and adjacent pentagons
on the truncated icosahedron.

Implementing a Sampling Grid in the Plane
of a Truncated Icosahedron Hexagon

Systematic Point Grids in the Plane

The three regular polygon tessellations in the plane (Cox-
eter 1969), the triangular, square, and hexagonal tessella-
tions, have corresponding dual-point grids—the hexagonal,
square, and triangular grids — whose points are the centers
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Figure 10. Hexagons of the truncated icosahedron covering central North America and Alaska.

of the corresponding polygons (Figure 13). Any of the three
can define an equal-area sampling network. The triangular
grid and its corresponding hexagonal tessellation have the
advantage of being the most compact and isotropic. Fur-
thermore, some modest statistical advantages accrue to the
triangular grid because of its geometric properties (Switzer
1975; Olea 1984; Matérn 1986). The square grid has the
advantage of most frequent and easy application. The tri-
angular tessellation and its corresponding hexagonal point
grid appear to have little advantage for our application. We
choose to use the triangular grid to take advantage of com-
pactness and greater directional freedom.

Hierarchical Decomposition of Triangular Grids

The triangular grid can be decomposed in several ways.
The theory for these decompositions is contained in the
algebraic theory of groups (Dacey 1964; Hudson 1967). The
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three lowest-order decompositions (aside from the identity
decomposition) that maintain the triangular structure, and
hence uniform probabilities under randomization, result in
increases in density by factors of 3, 4, and 7. (The literature
of central place theory in economic geography describes
these hierarchies as applied to the dual tessellations of hex-
agons [Christaller 1966; Losch 1954]).

To implement these decompositions, we can develop al-
gorithms for transforming a grid to a higher density. In
order to provide a consistent description, each algorithm
for density enhancement is described as a transformation
in the plane of a unit figure containing the additional points.
The algorithms are applied to the unit figure associated
with each original grid point. For this presentation, the
original grid is assumed to be aligned such that one of its
three axes is parallel to the x axis of the cartesian grid.

For the threefold enhancement, the unit figure is an equi-
lateral triangle with one vertex, corresponding to a point
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Figure 11. The truncated icosahedron as placed on the globe
for optimal coverage of the conterminous United States,
Alaska, and Hawaii shown in three orthographic projections.

on the original grid, at the origin, a second point at (—1/2,
=V/3/2), and the third at (1/2, —/3/2). The second and
third points of the unit figure are scaled by d//3, where d
is the distance between points in the original grid, and
rotated by m/6 (Figure 14). Since there is three-way sym-
metry in a triangular grid, two threefold enhancements bring
the grid back into the original alignment. An alternative
way to conceptualize this is by placing an additional point

at the geometric center of each triangle formed by three
neighboring points in the original grid (as, for example, in
Mandelbrot [1988]).

For the fourfold enhancement, the unit figure is a rhom-
bus with one vertex, corresponding to a point on the orig-
inal grid, at the origin, a second point at (—1/2, —/3/2),
a third at (1/2, ~v/3/2), and the fourth at (1,0). The last
three points are scaled by d/2, d defined as above. There
is no rotation in the fourfold enhancement (Figure 15). An
alternative way to conceptualize this is by placing an ad-
ditional point halfway between all pairs of neighboring points
in the original grid. .

For the sevenfold enhancement, the unit figure is a hex-
agon whose center is a point on the original grid and whose
vertices are (0,1), (—V/3/2,12), (—-V/3/2,—1/2), (0,~-1),
(V/3/2,-1/2), (\/3/2,1/2). The six points of the hexagon are
scaled by d/7, d defined as above, and rotated by -arctan
(1/3v/3) (Figure 16). (See Richardson [1961] and van Roessel
[1988] for related discussions.) Alternating sevenfold en-
hancements can realign with the original grid by alternating
the sign of the angle of rotation.

The geometric logic of enhancement applies as well to
reductions of an original grid, with the algorithms appro-
priately inverted. Furthermore, these basic factors of en-
hancement and reduction may be combined to achieve many
additional factors. Thus, a sevenfold enhancement with a
fourfold reduction results in a 7/4 increase in density. In
our application, the enhancements will typically be used to
increase the density of sampling for rare resources, and the
reductions for periodic cycles of sampling in time.

Base Grids for Sampling

A hexagon is a convenient figure from which to create a
triangular grid, since the vertices and the center form a
seven-point starting grid. A suitable compromise between

Figure 12. The polar configuration of the truncated icosahedron shown in the Hammer-Aitoff projection.
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Figure 13. Regular tessellations in the plane with corre-
sponding dual-point grids. (a) Top: Triangular tessellation
with hexagonal grid. (b) Middle: Square tessellation with
square grid. (c) Bottom: Hexagonal tessellation with trian-

gular grid.

the desired spatial resolution of sampling and the projected
available financial resources can determine the density of
a base sampling grid. For our application, an approximately
640 square km hexagon tessellation about the points, corre-
sponding to a distance between sampling points of ap-
proximately 27 kilometers, has been suggested. This can
be very closely realized with a decomposition of the hex-
agon of the truncated icosahedron by a factor of 32 * 45, or
two enhancements by 3 followed by five enhancements by
4. The increase in density is by a factor of 9,216, corre-
sponding to a linear increase by a factor of 96. Thus, each
edge of the large hexagon can be divided into 96 equal parts
and the derived points connected to obtain a triangular grid
for this base sampling density containing 27,937 points.

Addressing Systems

Uniquely identifying points on the sampling grid is nec-
essary for assigning attributes to the points. The simplest
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Figure 14. Threefold enhancement and reduction. (a) Top:
Unit figure scaled to unit grid; before rotation. (b) Middle:
After rotation by m/6; enhancement complete. (c) Bottom:
Three levels of the threefold decomposition hierarchy.

system is to number sequentially by rows and to number
within rows of one of the axes of the grid. Enhancements
in grid density require additional numbers, or addresses,
in the sequence, and a history of awarded numbers to avoid
duplication. Two other addressing systems merit attention.

The first is a cross-reference system with existing coor-
dinate systems. The most useful of these is the standard
geographic system of latitude and longitude. Each point
can be assigned a pair of numbers in latitude and longitude
(or a concatenated or interleaved single number) with suf-
ficient precision to uniquely specify the point. In particular,
since the maximum distance that occurs in a 7.5-minute
quadrangle in the conterminous United States is less than
20 kms, and hence there can be no more than one base
sampling point in any quad, the numbering convention
adopted by the U.S. Geological Survey for these large scale
topographic quadrangles could be effectively used (USGS
1985). The potential for enhancement of density also com-
plicates this approach, requiring enough digits of precision
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Figure 15. Fourfold enhancement and reduction. (a) Top:
Unit figure scaled to unit grid; no rotation needed, en-

hancement complete. (b) Bottom: Three levels of the four-

fold decomposition hierarchy.

to be reserved in advance, or the use of additional identi-
fication for enhanced grid points.

The second system makes use of the decomposition ge-
ometry to construct a single hierarchical identification sys-
tem. This approach is analogous to that of Dutton (1989),
Goodchild and Shiren (1989), and Wickman and others (1974)
for their respective polyhedral systems; it is also analogous
to that of Morton (1966) and Gargantini (1982) for square
hierarchies in the plane and Gibson and Lucas (1982) for
hexagonal hierarchies in the plane (and higher dimen-
sions). In our system of mixed hierarchies (Lindgren 1967;
Woldenberg 1982), both a radix or base number and a digit
in that radix need to be specified. In Figure 17, the digit
conventions are given for the threefold, fourfold, and sev-
enfold systems, respectively. At any finer level of the three-
fold, fourfold, or sevenfold hierarchy, a ternary, quaternary,
or septenary digit, respectively, uniquely identifies the points
derived from a single point on the coarser level. A two-
digit address (without radix) is shown for a point in a two-
level, fourfold hierarchy in Figure 18a.

When mixing hierarchies, the composition of enhance-
ments is commutative, so that there is more than one ad-
dress for a point, but no two points can have the same
address. One possible notation for addresses in the mixed
environment is left-to-right concatenation of successive lev-
els of decomposition with subscripts indicating the radices.
An example with a two-level, fourfold-by-threefold hier-
archy is shown in Figure 18b.

Since the base grid is fixed in our application, a conden-
sation of addresses for these points may be achieved by
combining the two threefold enhancements into a nonan-
ary (radix 9) digit, followed by five quaternary digits for
the five fourfold enhancements. With positional order as-

Cartography and Geographic Information Systems

©, 1/\/'7)
RRITARIT) oo, Wi, 1207
E n : = (1,0)
(VRR/TA1RIT) “Sn( - (V3T 11247)
(0-147)
] |
(1/2-/3/2) (12-V3/2)
(1/14,3V3/14)
i, .. ., (614./314)
;om "
(-5/14,-/3/14) "~ N H (217,-/37)
(-1/14,:3/3/14)
] |

Figure 16. Sevenfold enhancement and reduction. (a) Top:
Unit figure scaled to unit grid; before rotation. (b) Middle:
After rotation by -tan-(1/3/3); enhancement complete. (c)
Bottom: Three levels of the sevenfold decomposition
hierarchy.

signed and thus no radix digits required, only a six-digit
address for the baseline points is necessary for the decom-
position from one of the four rhombuses, or part rhom-
buses (triangles), of the North American hexagon. Adding
a digit on the front of the address for the initial thombus
makes a total of seven. This scheme is shown in Figure 19.
The four rhombuses, or parts, are numbered as in the four-
fold enhancement system. Therefore, for example, the
rhombus beneath (to the south of) the center of the hexa-
gon, extending to but not including the grid rows joining
the three large hexagon vertices southeast, south, and
southwest of the center, is number 3. It is subdivided into
nine rhombuses numbered 0 to 8 northwest to southeast
within row, and northeast to southwest across rows. This
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Figure 17. The three addressing systems. (a) Top: Threefold
system. (b) Middle: Fourfold system. (c) Bottom: Sévenfold
system.

accounts for the two threefold enhancements in the base-
line grid. Rhombuses are then successively quartered five
times to identify a single point. An example address on the
grid of the North American hexagon is shown in Figure 20.
Alternatively, four of the five fourfold enhancements could
be represented by two hexadecimal digits, with a single
quaternary digit at the end, further condensing the ad-
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Figure 18. Addressing examples. (a) Top: The address of
the circled point is 31 in the two-level, fourfold system. (b)
Bottom: The address of the circled point is 2,1, in the two-
level, fourfold-by-threefold system.

3

Figure 19. Baseline addressing scheme for a hexagon from
the truncated icosahedron. The five highest-order digits are
shown in one area.

dress. This addressing system could form the basis for a
modified quadtree storage system, where the second level
has nonanary rather than quaternary nodes, requiring
modifications to quadtree access and searching algorithms.

Cartography and Geographic Information Systems




Figure 20. Baseline sampling grid with addressing for the
North American hexagon. The darkened point’s address is
3321320, or 339E0 using hexadecimal condensation.

For identifying sample points uniquely across adjacent
faces of the truncated icosahedron model, an additional
level of addressing would be necessary to specify the face.
Points introduced in the seam between two faces also would
need special treatment. For points derived from a different
global configuration of the truncated icosahedron, identi-
fication of the configuration also would be necessary.

Summary

We have described the cartography and geometry of a sam-
pling design that can address a wide variety of environ-
mental issues, especially the assessment of the environmental
quality of major ecological resources. This design is fun-
damentally based upon a systematic grid of sampling lo-
cations placed on the plane of an equal-area map projection
from the surface of the earth. The plane can be construed
as the face of a regular geometric model fit to the surface
of the earth. The faces of the geometric model provide an
appropriate compromise between large-enough areas of
coverage and small-enough distortion characteristics of the
map projection upon them. The plane grid is placed in a
triangular pattern with a regular geometry for varying the
density, and with several options for addressing the points.
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